Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes.

نویسندگان

  • Andrey V Struts
  • Gilmar F J Salgado
  • Katsunori Tanaka
  • Sonja Krane
  • Koji Nakanishi
  • Michael F Brown
چکیده

Rhodopsin is a prototype for G protein-coupled receptors (GPCRs) that are implicated in many biological responses in humans. A site-directed (2)H NMR approach was used for structural analysis of retinal within its binding cavity in the dark and pre-activated meta I states. Retinal was labeled with (2)H at the C5, C9, or C13 methyl groups by total synthesis, and was used to regenerate the opsin apoprotein. Solid-state (2)H NMR spectra were acquired for aligned membranes in the low-temperature lipid gel phase versus the tilt angle to the magnetic field. Data reduction assumed a static uniaxial distribution, and gave the retinylidene methyl bond orientations plus the alignment disorder (mosaic spread). The dark-state (2)H NMR structure of 11-cis-retinal shows torsional twisting of the polyene chain and the beta-ionone ring. The ligand undergoes restricted motion, as evinced by order parameters of approximately 0.9 for the spinning C-C(2)H(3) groups, with off-axial fluctuations of approximately 15 degrees . Retinal is accommodated within the rhodopsin binding pocket with a negative pre-twist about the C11=C12 double bond that explains its rapid photochemistry and the trajectory of 11-cis to trans isomerization. In the cryo-trapped meta I state, the (2)H NMR structure shows a reduction of the polyene strain, while torsional twisting of the beta-ionone ring is maintained. Distortion of the retinal conformation is interpreted through substituent control of receptor activation. Steric hindrance between trans retinal and Trp265 can trigger formation of the subsequent activated meta II state. Our results are pertinent to quantum and molecular mechanics simulations of ligands bound to GPCRs, and illustrate how (2)H NMR can be applied to study their biological mechanisms of action.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-state 2H NMR spectroscopy of retinal proteins in aligned membranes.

Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotati...

متن کامل

Retinal counterion switch mechanism in vision evaluated by molecular simulations.

Photoisomerization of the retinylidene chromophore of rhodopsin is the starting point in the vision cascade. A counterion switch mechanism that stabilizes the retinal protonated Schiff base (PSB) has been proposed to be an essential step in rhodopsin activation. On the basis of vibrational and UV-visible spectroscopy, two counterion switch models have emerged. In the first model, the PSB is sta...

متن کامل

Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.

Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation allows investigation of light-induced changes in local ps-ns time scale motions of retinal bound to rhodopsin. Site-specific (2)H labels were introduced into methyl gr...

متن کامل

Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin.

Rhodopsin, the photoreceptor pigment of the retina, initiates vision upon photon capture by its covalently linked chromophore 11-cis-retinal. In the absence of light, the chromophore serves as an inverse agonist locking the receptor in the inactive dark state. In the absence of chromophore, the apoprotein opsin shows low-level constitutive activity. Toward revealing insight into receptor proper...

متن کامل

Coupling of retinal isomerization to the activation of rhodopsin.

Activation of the visual pigment rhodopsin is caused by 11-cis to -trans isomerization of its retinal chromophore. High-resolution solid-state NMR measurements on both rhodopsin and the metarhodopsin II intermediate show how retinal isomerization disrupts helix interactions that lock the receptor off in the dark. We made 2D dipolar-assisted rotational resonance NMR measurements between (13)C-la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 372 1  شماره 

صفحات  -

تاریخ انتشار 2007